skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stow, Parker_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bacteria compete for iron by producing small-molecule chelators known as siderophores. The triscatechol siderophores trivanchrobactin and ruckerbactin, produced byVibrio campbelliiDS40M4 andYersinia ruckeriYRB, respectively, are naturally occurring diastereomers that form chiral ferric complexes in opposing enantiomeric configurations. Chiral recognition is a hallmark of specificity in biological systems, yet the biological consequences of chiral coordination compounds are relatively unexplored. We demonstrate stereoselective discrimination of microbial growth and iron uptake by chiral Fe(III)–siderophores. The siderophore utilization pathway inV. campbelliiDS40M4 is stereoselective for Λ-Fe(III)–trivanchrobactin, but not the mismatched Δ-Fe(III)–ruckerbactin diastereomer. Chiral recognition is likely conferred by the stereospecificity of both the outer membrane receptor (OMR) protein FvtA and the periplasmic binding protein (PBP) FvtB, both of which must interact preferentially with the Λ-configured Fe(III)-coordination complexes. 
    more » « less